Tag Archives: helmet expert witness

Helmet expert witness Dr. John Lloyd has served attorneys nationwide for 25+ years in biomechanics, human factors, helmet testing and motorcycle accident expert

What Every Rider Needs to Know About Motorcycle Helmets

I am a motorcycle enthusiast with 40+ years of experience in the saddle and a biomechanics researcher focusing on head and brain injury. Over the years I performed more than 2600 helmet impact tests, including 328 motorcycle helmets. The following are my take-away points for motorcyclists:

Lloyd-Biomechanics Motorcycle Helmets-Figure 2
  1. Helmets are the best protection we have against head and brain injuries. That said, standard certified motorcycle helmets are only 37-42% effective in preventing fatal head injuries. 
  2. Helmets are designed after ancient military helmets to serve as a second skull and thereby protect the head against penetrating injury.
  3. Helmets, in general, are not intended to protect against brain injury.
  4. There are two types of head and brain injuries, which are caused differently:
    • Translational (linear) forces cause focal injuries including cuts, bruises, and skull fractures.
    • Tangential forces cause rotational injuries including concussion, brain nerve damage, and brain bleeding.
    • Translational and tangential forces are generated in every impact
  5. Certified motorcycle helmets do a great job of protecting against focal head injuries.
  6. My research shows that DOT-certified motorcycle helmets reduce the risk and severity of focal injuries by 93 percent. 
  7. Novelty (non-certified) helmets do not offer any protection against focal injuries.
  8. It is therefore highly recommended that riders wear a certified motorcycle helmet at all times.
  9. Helmets that offer greater coverage, i.e. open-face (3/4) and full-face helmets, provide the best protection against focal injuries. However, the US DOT standard (FMVSS 218) [i] does not require impact testing of the chin bar, therefore there is no certified protection against facial injuries for full-face helmets that are only certified to the DOT standard.
  10. Generally, certified motorcycle helmets do not protect against rotational brain injuries. In fact, on average, a standard certified motorcycle helmet will actually increase the rider’s risk of concussion, nerve damage (axonal injury), and brain bleeding (subdural hemorrhage) by 19 percent, compared to an unhelmeted head impact.
  11. Rotational brain injuries are the cause of fatalities in two-thirds of all helmeted motorcycle deaths.
  12. It has been shown that, in general, larger and heavier helmets increase the risk of rotational brain injuries, including concussion, axonal injury, and brain bleeding because they generate greater impact-related rotational forces on the brain.
  13. So, what can a safety-minded rider do to minimize their risk?
  14. Revised motorcycle helmet standards are starting to look at brain injury risk. The new ECE 22.06 [ii] and Snell M2025 [iii] standards now measure the risk of rotational brain injury, though the passing threshold is 23% risk of neurologically devastating or potentially fatal rotation brain injury, at a moderate impact speed of 17.5 mph. 
  15. My recommendation is to choose a helmet that meets either the ECE 22.06 or Snell M2025 standard, in addition to whatever standard is mandated in your country.
  16. Choose a lighter, smaller helmet with the desired coverage over a larger, heavier helmet. Not only will this likely provide better protection against rotational brain injuries, but will also generate less wind resistance and be more comfortable on those longer rides.
  17. Consider helmets that incorporate new technologies that are intended to reduce the risk of rotational brain injuries. Such technologies include the omni-directional protection system and the multi-directional protection system (MiPS).
  18. Don’t buy a helmet just based on looks, make an informed purchase based on fit and protective performance.
  19. What can motorcycle helmet manufacturer’s do to improve helmet performance?
  20. Current motorcycle helmet designs may be over-engineered to reduce translational forces that cause focal head injuries, resulting in helmets that are larger and heavier, thereby increasing the risk of rotational brain injuries, which are the primary cause of fatality in two-thirds of helmeted motorcycle crashes. Protection against focal injuries is important, but needs to be balanced against increased risk of rotational brain injuries. Manufacturers should evaluate materials that allow the development of smaller and lighter helmets.
  21. A meta-analysis is underway, comparing helmets intended for a variety of activities including motorcycling, skiing, bicycle, off-road, American football, ice hockey and military. Preliminary results suggest that helmets intended for other sports activities may outperform motorcycle helmets at similar impact speeds in terms of protection against both focal head injuries and rotational brain injuries

[i] U.S. Department of Transportation (2013) Federal Motor Carrier Safety Administration Standard No. 218, Motorcycle helmets. Washington, DC.

[ii] United Nations (2021). Uniform Provisions Concerning the Approval of: Protective Helmets, of their Visors and of their Accessories for Drivers and Passengers of Motorcycles and Mopeds. Regulation No. 22-06

[iii] Snell Memorial Foundation. (2024). Standard for Protective Headgear for use with Motorcycles and Other Motorized Vehicles. M2025

Helmets Do Not Prevent Brain Injury?

In a word. No.

A better question might be “Can Helmets Prevent Brain Injury?” Same answer – No.

It is not currently possible to develop a helmet that can protect all persons under all foreseen and unforeseen circumstances. But, given current medical understanding of head and brain injuries as well as 21st Century advanced materials, it is certainly possible to protect most people from life-threattening brain injuries under foreseen circumstances.

Helmets are actually intended to protect against blunt trauma injuries to the head. They are not specifically designed to prevent brain injuries.

The mechanisms which cause head and brain injuries are quite different. Forces associated with linear accelerations are responsible for visible injuries, such as lacerations, contusions and skull fracture. Whereas, brain injuries, including concussions, axonal injury and subdural hematoma are caused by forces associated with angular / rotational accelerations. When the head impacts a surface, the skull may come to an abrupt stop, but inertia acting on the brain will cause it to continue to move This inertia strains the nerves and blood vessels of the brain, causing injuries. The type of injury is dependent on the magnitude of this strain and the time duration over which it acts on the brain.

Helmets may indeed reduce the rotational forces acting on the brain. But since helmets are not currently certified according to their ability to protect against brain injury the level of protection is not standardized. Hence, it is possible to sustain catastrophic brain injuries, even while wearing a helmet.

I have performed extensive biomechanical testing of helmets for various applications, including military, motorcycle, football, skiing / snowboarding and cycling. My testing involves measurement of both linear and angular accelerations, thereby characterizing helmets in terms of their ability to protect against head and brain injuries. Results vary substantially between manufacturers that offer helmets for particular applications and between applications. Based on my testing to date, I can report that certain football helmets seem to outperform helmets in other categories in terms of their ability to protect against head and brain injuries.

Much research has been conducted to understand and quantify biomechanical thresholds for various head and brain injuries, including skull fractures, concussions, axonal injury (damage to nerve fibers in the brain) and subdural hematomas (bleeding in the brain). Why then don’t all helmet manufacturers strive to provide necessary protection?

There are certain intrinsic or personal factors that might increase one’s risk of head and brain injury, but for the rest of us, why do helmets provide inadequate protection against life-threatening head and brain injuries during reasonable or foreseen use?

One example of this is the life-threatening brain injury which former Formula One superstar, Michael Schumaker sustained when he fell while skiing and impacted a rock. It has been reported that Mr. Schumaker was only skiing at about 13mph when he fell and the likelihood of impacting a fixed object while skiing, such as a tree or rock is certainly not unforeseen. So why did his helmet fail to provide necessary protection?

helmet - Dr. John Lloyd

Advanced materials certainly exist to provide required protection for normal persons, including Mr. Schumaker and many other unfortunate victims, under normal or foreseen circumstances. As end-users, we must demand that regulatory organizations require helmet manufacturers meet standards that protect persons who are not otherwise at heightened risk from head and brain injuries due to foreseen circumstances.