Tag Archives: helmet expert

Helmet expert Dr. John Lloyd has served attorneys nationwide for 25+ years in biomechanics, human factors, helmet testing and motorcycle accident expert

Helmet Testing & Case Studies

helmet testing

The following are links to articles and case studies written by John Lloyd on helmet research and testing:

Motorcycle Helmet Testing

Biomechanical Evaluation of Motorcycle Helmets: Protection Against Head & Brain Injuries

What Every Rider Needs to Know About Motorcycle Helmets

Crash-Related Motorcycle Helmet Retention System Failures

Helmets – The Ultimate Protection?

Helmets Do Not Prevent Brain Injury

Motorcycle Helmets Provide Inadequate Protection Against Traumatic Brain Injury

Sport and Football Helmets

Brain Injury in Sports

How Well Do Football Helmets Protect Against Concussion and Brain Injury?

Researchers Discover Objective Indicator of Concussion

New Helmet Technology Reduces Brain Injuries

Case Studies

Helmeted Motorcyclist Fatality

What Every Rider Needs to Know About Motorcycle Helmets

I am a motorcycle enthusiast and a biomechanics researcher focusing on head and brain injury. Over the years I have performed more than 2600 helmet impact tests. The following are my take-away points for motorcyclists:

Lloyd-Biomechanics Motorcycle Helmets-Figure 2
  1. Helmets are the best protection we have against head and brain injuries. That said, standard certified motorcycle helmets are only 37-42% effective in preventing fatal head injuries. 
  2. Helmets are designed after ancient military helmets to serve as a second skull and thereby protect the head against focal injury.
  3. However, standard motorcycle helmets are not intended to protect against rotational brain injuries.
  4. There are two types of head and brain injuries, which are caused differently:
    • Translational (linear) forces cause focal injuries including cuts, bruises, and skull fractures.
    • Tangential forces cause rotational injuries including concussion, brain nerve damage, and brain bleeding.
    • Translational and tangential forces are generated in every impact
  5. Certified motorcycle helmets do a great job of protecting against focal head injuries.
  6. My research shows that DOT-certified motorcycle helmets reduce the risk and severity of focal injuries by 93 percent. 
  7. Novelty (non-certified) helmets do not offer any significant protection against focal injuries.
  8. It is therefore highly recommended that riders wear a certified motorcycle helmet at all times.
  9. Helmets that offer greater coverage, i.e. open-face (3/4) and full-face helmets, provide the best protection against focal injuries. However, the US DOT standard (FMVSS 218) [i] does not require impact testing of the chin bar, therefore there is no certified protection against facial injuries for full-face helmets that are only certified to the DOT standard.
  10. Generally, certified motorcycle helmets do not protect against rotational brain injuries. In fact, on average, a standard certified motorcycle helmet will actually increase the rider’s risk of concussion, nerve damage (axonal injury), and brain bleeding (subdural hemorrhage) by 19 percent, compared to an unhelmeted head impact.
  11. Rotational brain injuries are the cause of fatalities in two-thirds of all helmeted motorcycle deaths.
  12. It has been shown that, in general, larger and heavier helmets increase the risk of rotational brain injuries, including concussion, axonal injury, and brain bleeding because they generate greater impact-related rotational forces on the brain.
  13. So, what can a safety-minded rider do to minimize their risk?
  14. Revised motorcycle helmet standards are starting to look at brain injury risk. The new ECE 22.06 [ii] and Snell M2025 [iii] standards now measure the risk of rotational brain injury, though the passing threshold is 23% risk of neurologically devastating or potentially fatal rotation brain injury, at a moderate impact speed of 17.5 mph. 
  15. My recommendation is to choose a helmet that meets either the ECE 22.06 or Snell M2025 standard, in addition to whatever standard is mandated in your country.
  16. Choose a lighter, smaller helmet with the desired coverage over a larger, heavier helmet. Not only will this likely provide better protection against rotational brain injuries, but will also generate less wind resistance and be more comfortable on those longer rides.
  17. Consider helmets that incorporate new technologies that are intended to reduce the risk of rotational brain injuries.
  18. Don’t buy a helmet just based on looks, make an informed purchase based on fit and protective performance.
  19. What can motorcycle helmet manufacturer’s do to improve helmet performance?
  20. Current motorcycle helmet designs may be over-engineered to reduce translational forces that cause focal head injuries, resulting in helmets that are larger and heavier, thereby increasing the risk of rotational brain injuries, which are the primary cause of fatality in two-thirds of helmeted motorcycle crashes. Protection against focal injuries is important, but needs to be balanced against increased risk of rotational brain injuries. Manufacturers should evaluate materials that allow the development of smaller and lighter helmets.
  21. A meta-analysis is underway, comparing helmets intended for a variety of activities including motorcycling, skiing, bicycle, off-road, American football, ice hockey and military. Preliminary results suggest that helmets intended for other sports activities may outperform motorcycle helmets at similar impact speeds in terms of protection against both focal head injuries and rotational brain injuries

[i] U.S. Department of Transportation (2013) Federal Motor Carrier Safety Administration Standard No. 218, Motorcycle helmets. Washington, DC.

[ii] United Nations (2021). Uniform Provisions Concerning the Approval of: Protective Helmets, of their Visors and of their Accessories for Drivers and Passengers of Motorcycles and Mopeds. Regulation No. 22-06

[iii] Snell Memorial Foundation. (2024). Standard for Protective Headgear for use with Motorcycles and Other Motorized Vehicles. M2025

Motorcycle Helmet Standards

Motorcycle helmets were originally developed in the early 20th century and, like most helmets, are modeled after military helmets, the purpose of which is to protect against penetrating head injury. The modern motorcycle helmet, with a hard outer shell and rigid expanded polystyrene (EPS) liner was actually introduced over 60 years ago. The outer shell serves as a second skull, dispersing the impact force over a wider surface area, while the inner shell compresses in an attempt to reduce translational forces. A mechanism to mitigate tangential forces is absent. Since the liner fills the entire inner surface of the shell, tangential forces cannot be absorbed and are transmitted directly to the head and brain. Motorcycle helmet standards focus on reducing the effect of linear impact forces by dropping them from a given height onto an anvil and measuring the resultant peak linear acceleration.

Motorcycle Helmet Standards

In motorcycle helmet testing, the risk of impact loading injuries, such as skull fractures, can be determined by measuring linear accelerations experienced by a surrogate head form in response to impact. Whereas risk of impulse or inertial loading injuries, such as concussion, axonal injury and subdural hematoma can be quantified by measuring impact-related angular accelerations at the center of mass of a test head form.

Unfortunately, the evolution of motorcycle helmet design is not driven by advances in scientific knowledge, but rather by the need to meet applicable testing standards. In the United States, standards include the federal motor vehicle safety standard (FMVSS) #218, commonly known as the DOT motorcycle helmet testing standards, and Snell M2015, while ECE 22.05 and BSI 6658 were adopted in European countries. Test procedures involve dropping a helmeted head form onto various steel anvils at impact velocities ranging from only 5.0 to 7.75 m/s (11-17 mph). Pass/fail is based on the ability of the helmet to provide protection against forces associated with linear acceleration in response to impact.

John Lloyd expert witness motorcycle helmet standardsCurrent motorcycle helmet testing standards do not incorporate measures of angular acceleration and therefore fail to assess whether helmets offer protection against catastrophic brain injuries. The omission of this critical measure is reflected epidemiologically in the disproportion of closed head injuries in fatal motorcycle accidents.

Helmeted Motorcyclist Fatality

Two helmeted motorcyclist were traveling on a rural state road when a tractor-trailer driver failed to see the bikes and made a left turn in front of them to enter a truck stop. The rider in the right track had little time to respond and collided head first into the box trailer. He was pronounced deceased at the scene.

Lloyd helmeted motorcycle case

The helmeted motorcyclist was wearing a non-compliant or ‘novelty’ helmet, which did not meet DOT motorcycle helmet standards (FMVSS 218). Opposing counsel claimed that had the biker been wearing a DOT-certified motorcycle helmet he may have survived the impact.

novelty motorcycle helmet shell
novelty motorcycle helmet liner

Motorcycle helmet expert, Dr. John Lloyd, was retained to evaluate and compare the protective performance of DOT-certified and novelty motorcycle helmets.

Based on a comprehensive motorcycle accident reconstruction it was determined that the impact speed of the rider was 45 to 50 miles per hour. Motorcycle helmet certification tests typically involve impact speeds of 13-17 miles per hour. Therefore a dedicated apparatus was constructed to generate higher impact speeds. Using a force-balanced twin pendulum apparatus, Dr. Lloyd was able to generate head impact speeds similar to those specific to the subject crash, yet preserve the standard DOT test methodology, thereby avoiding a Daubert challenge.

Eight DOT and non-DOT helmets were purchased for this study. Each was impacted once in the frontal region while fitted to an instrumented crash test dummy head. High speed data and video were acquired for each test.

Results demonstrate that, although the tested DOT-certified motorcycle helmets outperformed the tested novelty helmets, neither would provide adequate protection against head injuries, such as skull fractures, contusions and lacerations, or brain injuries, including hemorrhages or axonal injury in an impact of this magnitude.

helmeted motorcyclist head injury
helmeted motorcyclist brain injury

Dr. Lloyd’s prior published motorcycle helmet studies demonstrate that while DOT-certified motorcycle helmets can reduce the risk of traumatic head injuries, typical helmets do not afford any protection against acute brain injury.

Research

Biomechanical Analysis Athletic Protectors

Concussion and Brain Injury Associated with Headrest Impacts in Rear End Car Crashes

Helmeted Motorcyclist Fatality

Motorcycle Pothole Crash

New Football Helmet Reduces Brain Injury

John Lloyd of BRAINS, Inc. announced today that football head injuries and concussions can be reduced up to 50 percent with their new helmet safety breakthrough. 

football helmet reduces brain injury - Dr John Lloyd

football helmet prototype

San Antonio, FL – Dr.John Lloyd PhD of BRAINS, Inc. announced their latest breakthrough in football helmet safety today. The unique new helmet technology promises to provide up to 50 percent more protection against football head injuries and concussions. The technology has wide application and can be used in every kind of helmet from baby helmets to military helmets, and for all athletes at risk of concussion and head injuries such as football players, cyclists, skiers, snowboarders, skateboarders, hockey players, baseball players, lacrosse players, boxers, soccer players, equestrian / horse-riding sports, such as polo and horse racing, as well as motorcycle and race car drivers.

Recent medical research documents found that concussions and cumulative head impacts can lead to lifelong neurological consequences such as chronic traumatic encephalopathy, a degenerative brain disease known as CTE and early Alzheimer’s.

The U.S. Centers for Disease Control and Prevention, estimates 1.6 – 3.8 million sport-related brain injuries annually in the United States. Of these 300,000 are attributed to youth football players, some of whom die from their injuries every year – a tragedy difficult for their mothers and families to recover from.

The severity of the issue touching both the nation’s youth and professional athletes has led to thousands of lawsuits and Congressional Hearings. Growing concern has spread to the White House where President Obama recently spoke at the Healthy Kids and Safe Sports Concussion Summit.

The BRAINS, Inc. research team, led by renowned brain injury expert, Dr. John Lloyd, has worked for years on their project to help make sports safer. A controversial subject, some opponents have stated that concussion prevention is impossible. Dedicated to saving lives and preserving brain health, Dr. Lloyd and team persevered with their work leading to this new innovation. “Our results show that forces associated with concussion and brain injury are reduced up to 50% compared to similar testing with a leading football helmet,” said Dr. John Lloyd, Research Director.

helmet reduces brain injury - Dr John Lloyd

helmet prototype reduces concussion and brain injury risk

“The patent-pending matrix of non-Newtonian materials will not only benefit football, but can be utilized in all sports helmets as well as military, motorcycle and even baby helmets to improve protection and dramatically reduce the risk of brain injuries,” reported Dr. Lloyd.

The materials are inexpensive, and produce a helmet that is considerably lighter and more comfortable than a traditional helmet.   Two additional applications of this new safety technology include medical flooring especially in hospitals and nursing homes or child play areas , as well as vehicle interiors.

 

About BRAINS, Inc.

BRAINS, Inc. located in San Antonio, Florida, is a research and development company focused on the biomechanics of brain injuries. The company was founded in 2011 by John D. Lloyd Bio, Ph.D., CPE, CBIS, Board Certified Ergonomist and Certified Brain Injury Specialist. He has also provided expert witness services nationwide for over 20 years in the fields of biomechanics, ergonomics and human factors, specializing in the biomechanics of brain injury, including sport and motorcycle helmet cases, slips and falls, motor vehicle accidents and pediatric head trauma. BRAINS, Inc. is open to licensing with manufacturers to bring this much-needed technology to market for the protection of sports participants and athletes of all ages. For additional information visit : http://drbiomechanics.com/sports-helmet-football-helmets/new-helmet-technology/  or call 813-624-8986.

Why all head protection is in need of a redesign

The humble helmet dates back nearly 3000 years and though it has been used prolifically in warfare, it is now most commonly used to provide head protection outside the combat arena. 

However, although applications might have diversified, it is still fundamentally designed and used to provide the same thing.

So when this most traditional of objects is combined with modern sensor technologies, greater test data resolution and analysis, there is bound to be fresh insight.

And this is the case for many conventional designs where sensors, test and measurement technologies are changing conventional thinking into how something has been designed, to how it should be designed.

It sets the scene and means helmet design is on a collision course for further impact protection, specifically in preventing serious brain injury by giving helmet designers greater clarity in to the mechanical forces at play in any particular scenario.

It was this, along with a lifetime of comprehensive knowledge, which enabled biomechanist Dr John Lloyd, research director of BRAINS, to start up a company dedicated to improving current helmet technology and ultimately improve protection for wearers. He aims to shed new light on helmet design, and improve protection against the fundamental causes of concussion and brain injury.

“There are two key forces at play during a head impact,” said Dr Lloyd, speaking at this year’s National Instruments Week in Austin, Texas. “Firstly there are linear forces, these are the ones that cause visible injuries such as bruising and skull fractures. However, the second is the rotational forces. These are the ones that cause invisible injuries such as concussion and brain injury.

“Current helmet testing technologies measure the linear forces. However, at this time, they do not measure the rotational forces, so consequently we have helmets for many sports that do not test against their ability to provide protection against concussions and brain injury.”

Whether it is for riding a bike, horse riding, skiing or indeed for the soldier in the field, the effect of rotational movement is the same. Yet, it is rarely tested for, and even less frequently measured, to see how effective any helmet is in rotation force protection.

Dr Lloyd modified the standard apparatus used for testing helmets (see the rig on page 28), where a head section is raised 2m on a rig and dropped under gravity before it hits a striking plate with an impact force in the region of 4500N. However, instead of using a standard head form, Dr Lloyd replaced it with a standard automotive crash test dummy head and neck section. This way, when the head impacts the striking plate at the bottom of the test rig it will rotate, and the movement measured.

“We had multiple sensors embedded in the centre of mass of this head form,” explained Lloyd. “So, during the impact we were able to measure the linear acceleration as well as the angular motion of the head.

“My measuring apparatus includes sensors from several manufacturers.. The angular rate sensor, for example, that is used to measure the rotational forces is a highly specialised sensor. And, as a result, has its own data acquisition hardware and software.”

Simplifying synchronisation
Trying to integrate all this data from different sensors was a challenge at best. And to make matters more complicated, the peak linear acceleration and peak angular acceleration actually happen at different points in time.

“So while you can just line up the data,” he said, “there is a lag between them. So we need to measure that lag, which is a critical measurement in the research.”

To resolve the problem, Dr Lloyd uses both the National Instruments LabView graphical software and a CompactDAQ to interface with the sensors and provide the necessary synchronisation between the various sensors.

Dr Lloyd modified his apparatus for testing helmets used by American footballers in the National Football League (NFL), to develop understanding of the how spinal and head injuries are caused and improve the design of the standard helmet.

“The results are pretty alarming in terms of how little protection they provide against concussions and traumatic brain injuries,” he said.

“Based on lessons learned from that study, I have developed a new ‘football’ helmet prototype. This uses a patent pending matrix of non-Newtonian materials and when we tested the prototype helmet, on the same apparatus, the result blew me away. Not only did these materials reduce the linear forces but compared to the standard football helmet they actually reduced the rotational forces that cause concussion and brain injury by an amazing 50%.”

The non-Newtonian materials Lloyd has in mind are inexpensive and produce a helmet that is considerably lighter and even said to be more comfortable for those wearing them.

Dr Lloyd is now expanding the concept of reducing rotation forces in helmets in every application and said it can be applied to almost any helmet design to help reduce concussion and brain injuries from sports to leisure and even back to warfare.

Building a rig and conducting the test
A modification to the US National Operating Committee on Standards for Athletic Equipment (NOCSAE) standard test apparatus was used by Dr John Lloyd, research director of US helmet research start-up, BRAINS.

He developed and validated a new helmet test rig to measure the impact of protective headwear to include measurements of both linear and angular kinematics. This apparatus consists of a twin wire fall test system equipped with a drop arm that incorporates a 50th percentile Hybrid III head and neck assembly from HumaneticsATD crash test dummy, as used in the automotive industry.

The aluminium fly arm runs on Teflon sleeves through parallel braided stainless steel wires, which are attached to mounting points in the building structure and anchored into the concrete foundation. The anvil, onto which the head drop systems impacts, consists of a 350mm x 350mm steel based plate.

Both the standard Riddell Revolution Speed US university football helmet, and the prototype BRAINS helmet that incorporates a non-Newtonian matrix, were dropped from a height of 2m onto a flat steel anvil, in accordance with American Society for Testing and Materials (ASTM) standards. This generated an impact velocity of 6.2 m/s (13.9 mph).

Instrumentation: 
A triaxial accelerometer from PCB Piezotronics and three DTS-ARS Pro 18k angular rate sensors (Diversified Technical Systems) were affixed to a tri-axial block installed at the centre of mass in the Hybrid III head form. Data from the accelerometer and angular rate sensors were acquired using National Instruments compactDAQ hardware.

Analysis: 
Data from the analogue sensors were acquired at 10,000Hz, per channel, using LabView and then filtered in Matlab using a phaseless 4th order Butterworth filter with a cut off frequency of 1650Hz. Angular acceleration values were derived from the angular velocity data based on a 5-point least squares quartic equation.

Result:
The result of the new helmet design shows significant improvement in rotational acceleration exerted on the head and neck, cutting the overall force by nearly 50%.

Author
Justin Cunningham

– See more at: http://www.eurekamagazine.co.uk/design-engineering-features/technology/why-all-head-protection-is-in-need-of-a-redesign/66493/#sthash.6Tv5duXE.dpuf

NI Week features John Lloyd football helmet expert

Football helmet expert, Dr. John Lloyd,  had the privilege to present his research on football helmets as part of the Keynote address at the National Instrument conference in Austin, TX this week. The audience of 5,000+ attendees learned about Dr. Lloyd’s research into biomechanics of the brain.

 

It has been said that helmets cannot prevent concussions. I disagree.

As a biomechanist I have dedicated my career to studying the biomechanics of brain injuries. There are two key mechanical forces that give rise to head and brain injuries (1) linear forces, which are responsible for visible injuries, including bruising and skull fractures, and (2) rotational forces, which cause invisible injuries, such as concussion and brain injury.

Since helmets are currently designed to pass testing standards that focus on linear forces only, it is no surprise that helmets have limited benefit in preventing concussions. Through advances in medicine we have learned that concussions can potentially have life-long neurological consequences, including memory impairement and personality changes / behavioral effects.

Over the past years I have developed and validated a testing method to evaluate helmets in terms of their ability to protect against both linear and rotational forces. Using this apparatus I characterized football helmets, results of which have been submitted to Science for publication.

Based on lessons learned from my biomechanical evaluation of various sports helmets, I have devised a matrix of shear-thickening non-Newtonian materials. A prototype helmet was constructed using this matrix liner, results of which show that rotational forces that cause concussion and other brain injuries are reduced by up to 50% compared to a leading football helmet, while also reducing linear forces.

Football helmet expert Dr. John Lloyd

helmet prototype reduces concussion risk

It is my goal and my passion to work with leading helmet companies to make this technology available to players and sports participants of all aged to enhance their protection against brain trauma. I am looking to collaborate with one manufacturer in each sport to offer an exclusive license patent-pending technology.