Category Archives: helmet testing

Helmet testing Dr. John Lloyd has served attorneys nationwide for 25+ years in biomechanics, human factors, helmet testing and motorcycle accident expert

Helmet Testing & Case Studies

helmet testing

The following are links to articles and case studies written by John Lloyd on helmet research and testing:

Motorcycle Helmet Testing

Biomechanical Evaluation of Motorcycle Helmets: Protection Against Head & Brain Injuries

What Every Rider Needs to Know About Motorcycle Helmets

Crash-Related Motorcycle Helmet Retention System Failures

Helmets – The Ultimate Protection?

Helmets Do Not Prevent Brain Injury

Motorcycle Helmets Provide Inadequate Protection Against Traumatic Brain Injury

Sport and Football Helmets

Brain Injury in Sports

How Well Do Football Helmets Protect Against Concussion and Brain Injury?

Researchers Discover Objective Indicator of Concussion

New Helmet Technology Reduces Brain Injuries

Case Studies

Helmeted Motorcyclist Fatality

Helmet Expert

Dr. Lloyd’s unique capability as a helmet expert is in the biomechanical  evaluation of helmets, specifically, football, sports and motorcycle helmets. Helmets are designed to reduce the risk of blunt force trauma to the head, however protection against diffuse traumatic brain injury is often inadequate. Dr. Lloyd is often called upon to opine whether the head and brain injuries may or may not have been prevented by head protection.

His work on football helmets has been published in the Journal of Neurosurgery and his work on motorcycle helmets has been printed in Adventure Bike Magazine.

motorcycle football sports helmet expert

As a helmet expert, Dr. Lloyd’s advanced research has lead to several peer-reviewed publications in scientific journals. Specifically, the test apparatus and methods that he employs to evaluate helmet protection was published in a landmark technical article titled “Response of an Impact Test Apparatus for Fall Protective Headgear Testing Using a Hybrid-III Head-Neck Assembly“.

Using this apparatus, helmet expert Dr. Lloyd and neurologist Dr. Frank Conidi of the Florida Center for Headache and Sports Neurology have presented a series of studies at the American Academy of Neurology meetings. Their work was publicized by the AAN in a press-release titled “How Well Do Football Helmets Protect Players from Concussions“. Dr. Lloyd and Dr. Conidi published a scientific article in the Journal of Neurosurgery titled “Brain Injury in Sports“. This article documents the limited protection against traumatic brain injuries afforded by many current varsity football helmets.

Example Motorcycle Helmet Expert Case

motorcycle helmet expert Hamilton crashDr. Lloyd provided biomechanical analysis on a recent motorcycle accident case in which an automobile crossed the path of an unhelmeted rider traveling at approximately 25 miles per hour. The motorcyclist’s head shattered the driver’s side window, leading to catastrophic brain injury


motorcycle helmet expert Hamilton test apparatusDr. Lloyd was asked to opine as to whether or not a motorcycle helmet would have prevented these injuries. A test apparatus was constructed using an exemplar automobile driver’s door and window to measure the forces acting on a crash test dummy head.

The following high speed videos and data were captured showing the helmeted versus unhelmeted conditions.

We learned that, had the motorcyclist been wearing a helmet during the subject collision, he would have most likely sustained fatal neck injuries as the helmet was deflected by the window, producing unsurvivable neck extension, as shown below:

Test results and video documentation were presented at deposition and proved highly valuable.

motorcycle helmet expert Hamilton test results

Please call Dr. Lloyd at 813-624-8986 or email  DrJohnLloyd@Tampabay.RR.com to discuss how he can be of help to you with your case.

Testing Proves Motorcycle Helmets Provide Inadequate Protection Against TBI

Motorcycle accident victims account for more than 340,000 fatalities annually, with the United States ranking 8th highest worldwide in the number of motorcycle accident deaths. 75% of all fatal motorcycle accidents involve brain injury, with rotational forces acting on the brain the primary cause of mortality. Current motorcycle helmets are effective at reducing head injuries associated with blunt impact. However, the mechanism of traumatic brain injury is biomechanically very different.

Samples of 9 motorcycle helmet models, representing full-face, three-quarter and shorty designs were evaluated. Helmets, fitted to an instrumented Hybrid III head and neck, were dropped at 13 mph in accordance with DOT motorcycle helmet testing standards.motorcycle helmets test

Results show that, on average, there is a 67% risk of concussion and a 10% probability of severe or fatal brain injury associated with a relatively minor 13mph helmeted head impact.

motorcycle helmets test results

In conclusion, motorcycle helmets provide inadequate protection against concussion and severe traumatic brain injury associated with even relatively minor head impact

NI Week features John Lloyd football helmet expert

Football helmet expert, Dr. John Lloyd,  had the privilege to present his research on football helmets as part of the Keynote address at the National Instrument conference in Austin, TX this week. The audience of 5,000+ attendees learned about Dr. Lloyd’s research into biomechanics of the brain.

 

It has been said that helmets cannot prevent concussions. I disagree.

As a biomechanist I have dedicated my career to studying the biomechanics of brain injuries. There are two key mechanical forces that give rise to head and brain injuries (1) linear forces, which are responsible for visible injuries, including bruising and skull fractures, and (2) rotational forces, which cause invisible injuries, such as concussion and brain injury.

Since helmets are currently designed to pass testing standards that focus on linear forces only, it is no surprise that helmets have limited benefit in preventing concussions. Through advances in medicine we have learned that concussions can potentially have life-long neurological consequences, including memory impairement and personality changes / behavioral effects.

Over the past years I have developed and validated a testing method to evaluate helmets in terms of their ability to protect against both linear and rotational forces. Using this apparatus I characterized football helmets, results of which have been submitted to Science for publication.

Based on lessons learned from my biomechanical evaluation of various sports helmets, I have devised a matrix of shear-thickening non-Newtonian materials. A prototype helmet was constructed using this matrix liner, results of which show that rotational forces that cause concussion and other brain injuries are reduced by up to 50% compared to a leading football helmet, while also reducing linear forces.

Football helmet expert Dr. John Lloyd

helmet prototype reduces concussion risk

It is my goal and my passion to work with leading helmet companies to make this technology available to players and sports participants of all aged to enhance their protection against brain trauma. I am looking to collaborate with one manufacturer in each sport to offer an exclusive license patent-pending technology.

Helmets Do Not Prevent Brain Injury?

In a word. No.

A better question might be “Can Helmets Prevent Brain Injury?” Same answer – No.

It is not currently possible to develop a helmet that can protect all persons under all foreseen and unforeseen circumstances. But, given current medical understanding of head and brain injuries as well as 21st Century advanced materials, it is certainly possible to protect most people from life-threattening brain injuries under foreseen circumstances.

Helmets are actually intended to protect against blunt trauma injuries to the head. They are not specifically designed to prevent brain injuries.

The mechanisms which cause head and brain injuries are quite different. Forces associated with linear accelerations are responsible for visible injuries, such as lacerations, contusions and skull fracture. Whereas, brain injuries, including concussions, axonal injury and subdural hematoma are caused by forces associated with angular / rotational accelerations. When the head impacts a surface, the skull may come to an abrupt stop, but inertia acting on the brain will cause it to continue to move This inertia strains the nerves and blood vessels of the brain, causing injuries. The type of injury is dependent on the magnitude of this strain and the time duration over which it acts on the brain.

Helmets may indeed reduce the rotational forces acting on the brain. But since helmets are not currently certified according to their ability to protect against brain injury the level of protection is not standardized. Hence, it is possible to sustain catastrophic brain injuries, even while wearing a helmet.

I have performed extensive biomechanical testing of helmets for various applications, including military, motorcycle, football, skiing / snowboarding and cycling. My testing involves measurement of both linear and angular accelerations, thereby characterizing helmets in terms of their ability to protect against head and brain injuries. Results vary substantially between manufacturers that offer helmets for particular applications and between applications. Based on my testing to date, I can report that certain football helmets seem to outperform helmets in other categories in terms of their ability to protect against head and brain injuries.

Much research has been conducted to understand and quantify biomechanical thresholds for various head and brain injuries, including skull fractures, concussions, axonal injury (damage to nerve fibers in the brain) and subdural hematomas (bleeding in the brain). Why then don’t all helmet manufacturers strive to provide necessary protection?

There are certain intrinsic or personal factors that might increase one’s risk of head and brain injury, but for the rest of us, why do helmets provide inadequate protection against life-threatening head and brain injuries during reasonable or foreseen use?

One example of this is the life-threatening brain injury which former Formula One superstar, Michael Schumaker sustained when he fell while skiing and impacted a rock. It has been reported that Mr. Schumaker was only skiing at about 13mph when he fell and the likelihood of impacting a fixed object while skiing, such as a tree or rock is certainly not unforeseen. So why did his helmet fail to provide necessary protection?

helmet - Dr. John Lloyd

Advanced materials certainly exist to provide required protection for normal persons, including Mr. Schumaker and many other unfortunate victims, under normal or foreseen circumstances. As end-users, we must demand that regulatory organizations require helmet manufacturers meet standards that protect persons who are not otherwise at heightened risk from head and brain injuries due to foreseen circumstances.

Research article “Brain Injury in Sports” published in Journal of Neurosurgery

Dr. Lloyd is pleased to announce that his research article  on Sports Brain Injury, co-authored with Dr. Frank Conidi has been published in the Journal of Neurosurgery:

Lloyd - Sports Brain Injury

OBJECT
Helmets are used for sports, military, and transportation to protect against impact forces and associated injuries. The common belief among end users is that the helmet protects the whole head, including the sports brain injury. However, current consensus among biomechanists and sports neurologists indicates that helmets do not provide significant protection against concussion and sport brain injury. In this paper the authors present existing scientific evidence on the mechanisms underlying traumatic head and sports brain injury, along with a biomechanical evaluation of 21 current and retired football helmets.

METHODS
The National Operating Committee on Standards for Athletic Equipment (NOCSAE) standard test apparatus was modified and validated for impact testing of protective headwear to include the measurement of both linear and angular kinematics. From a drop height of 2.0 m onto a flat steel anvil, each football helmet was impacted 5 times in the occipital area.

RESULTS
Skull fracture risk was determined for each of the current varsity football helmets by calculating the percentage reduction in linear acceleration relative to a 140-g skull fracture threshold. Risk of subdural hematoma was determined by calculating the percentage reduction in angular acceleration relative to the bridging vein failure threshold, computed as a function of impact duration. Ranking the helmets according to their performance under these criteria, the authors determined that the Schutt Vengeance performed the best overall.

CONCLUSIONS
The study findings demonstrated that not all football helmets provide equal or adequate protection against either focal head injuries or traumatic brain injuries. In fact, some of the most popular helmets on the field ranked among the worst. While protection is improving, none of the current or retired varsity football helmets can provide absolute protection against brain injuries, including concussions and subdural hematomas. To maximize protection against head and brain injuries for football players of all ages, the authors propose thresholds for all sports helmets based on a peak linear acceleration no greater than 90 g and a peak angular acceleration not exceeding 1700 rad/sec2.

http://thejns.org/doi/abs/10.3171/2014.11.JNS141742