Category Archives: expert witness

Expert witness Dr. John Lloyd has served attorneys nationwide for 25+ years in biomechanics, human factors, helmet testing and motorcycle accident expert

Admissibility of Biomechanics Testimony on Causation of Injury

On the admissibility of biomechanics testimony the Reference Manual on Scientific Evidence, written jointly by the National Academies of Sciences, Engineering and Medicine and the Federal Judicial Center, states: “Specifically, one cross-disciplinary domain deals with the study of injury mechanics, which spans the interface between mechanics and biology. The traditional role of the physician is the diagnosis (identification) of injuries and their treatment, not a detailed assessment of the physical forces and motions that created injuries during a specific event. The field of biomechanics (also called biomechanical engineering) involves the application of mechanical principles to biological systems, and is well suited to answering questions pertaining to injury mechanics.” In the case Garner v Baird [910 N.Y.S.2d 762, 762 (N.Y. Civ. Ct. 2010)] defined biomechanics as “the application of physics and mechanical engineering to the human body.”

In a ruling of the 1st District Court of Appeals of Florida on July 19, 2012 [98 So.3d 115, Florida First District Court of Appeals, 2012] Judge Healey concluded, “that biomechanics expert, Dr. John Lloyd is qualified to offer opinions as to causation because the mechanism of injury fell within the field of biomechanics”. Moreover, in the case of Taylor v Culver Florida First District Court of Appeals, 2015 the appeals court ruling, which directly references Council states “the proffered testimony of the Appellant’s biomechanics expert was relevant to the disputed issues concerning velocity and direction of forces involved in the accident”. In the case Maines v Fox [190 So.3d 1135, Florida First District Court of Appeals, 2016], the ruling states: “Biomechanical opinions as to the general causation of a type of injury are admissible in a personal injury case.”

Concussion and Brain Injury Associated with Headrest Impacts in Rear End Car Crashes

The following is a case study in which biomechanics expert, Dr. John Lloyd, evaluated the risk of concussion and brain injury associated with headrest impact in rear end crashes.

Headrest Impact Test Apparatus:

In accordance with prior published test methods [1],[2],[3], a test apparatus was constructed to evaluate the biomechanical protection afforded by an exemplar automobile headrest against head and brain injuries during occipital head impacts in a simulated rear-end motor vehicle collision.

The apparatus involves a pendulum arm, attached by bearing housings to a weighted base. The upper body, including neck and head of a 50th percentile Hybrid III crash test dummy was mounted to the pendulum arm. Data acquisition was initiated by triggering an electromechanical release mechanism, allowing the mannequin to fall, under acceleration due to gravity, until the crash test dummy impacted the headrest and backrest (Figure 1). 

Figure 1: Test apparatus

headrest impact test apparatus

The fundamental elements and principles of this testing have been utilized in other laboratories. By utilizing a Hybrid III neck, the head impact tests are more realistic, causing head rotation at the axis between the head and neck, which produces measures of head and brain angular kinematics. The methods presented herein are based upon standardized test methodologies and published research.

Instrumentation

Four PCB Piezotronics tri-axial accelerometers (model # 356A01) were mounted in an X,Y,Z array at the center of mass of the Hybrid III headform, along with a tri-axial angular rate sensor produced by Diversified Technical Systems (composite Figure 2). 

Figure 2: Sensor installation in Hybrid III headform

headrest impact test instrumentation

Sensor Calibration:

All sensors were calibrated by the manufacturer. Verification of calibration of the linear accelerometers was performed prior to testing using a calibration shaker. Results indicate that the sensors were operating in the specified frequency range and output (Figure 3).

Figure 3: Pre-test verification of linear accelerometer sensors 

headrest impact test - linear accelerometer calibration

For the angular rate sensor, a simple validation method was devised in which the sensor was affixed to a digital goniometer that was rotated through a 90-degree angle. Using LabVIEW software, the integral of angular rate was computed, reflecting concurrence with the digital goniometer for all three planes of motion (Figure 4).

Figure 4: Pre-test validation of angular rate sensor calibration

headrest impact test - angular rate sensor calibration

Headrest Impact Testing:

The mannequin head was raised from the headrest in 2-inch increments from 2 inches to 30 inches, generating head impact speeds from 1 to 25 miles per hour. Two headrest positions were evaluated, along with two different Hybrid III necks representative of a stiff and relaxed neck (Figure 5), for a total of sixty tests.

Figure 5: Test apparatus with Hybrid III loose neck and headrest in lower position

headrest impact test - loose neck apparatus

Data Acquisition and Analysis:

Data from the analog sensors were acquired in accordance with SAE J211 [4], using a National Instruments compact DAQ data acquisition system and LabVIEW software (National Instruments, Austin, TX). The raw data was then filtered in MATLAB (The MathWorks, Natick, MA) using a phaseless eighth-order Butterworth filter with cutoff frequencies of 1650 Hz and 300Hz for the linear accelerometers and angular rate sensors, respectively.

Angular acceleration values for sagittal, coronal and axial planes were computed from the angular velocity data using the 5-point central difference by least squares method (Equation 1):

Equation 1: Five-point central difference by least squares method

headrest impact test - Five-point central difference by least squares method

Angular acceleration vales were also derived from the array of linear accelerometers, by the mathematical method documented by Padgaonkar et al [5].

Linear velocity was calculated by integrating linear acceleration. Mathematical methods were performed using Matlab to compute characteristic values from variables of interest. Figure 6, below illustrates peak linear acceleration and angular velocity associated with a 6.8 mph occipital head impact against a headrest.

Figure 6: Linear acceleration and angular velocity associated with headrest impact

headrest impact test - linear and angular data

It is noted that the major component of linear acceleration was in the X-axis (anterior-posterior), while the major component of angular velocity was in the sagittal plane, as expected. 

Linear acceleration values were used to calculate Maximum Pressure (Equation 2), Gadd Severity Index (GSI) (Equation 3), and Head Injury Criterion (HIC15) (Equation 4).

Equation 2: Maximum Pressure

headrest impact test - Max pressure

Equation 3: Gadd Severity Index

headrest impact test - Gadd Severity Index GSI

The Head Injury Criterion (HIC) is an empirical measure of impact severity describing the relationship between the linear acceleration magnitude, duration of impact and the risk of head trauma (Equation 4).

Equation 4: Head Injury Criterion

headrest impact test - Head Injury Criterion HIC

where a is resultant head acceleration, t2-t1 < 15 msec

With reference to the Figure 7,  below, the HIC value is used to predict the risk of head trauma:
Minor –skull trauma without loss of consciousness; nose fracture; superficial injuries
Moderate – skull trauma with or without dislocated skull fracture and brief loss of consciousness. Fracture of facial bones without dislocation; deep wound(s)
Critical – Cerebral contusion, loss of consciousness for more than 12 hours with intracranial hemorrhaging and other neurological signs; recovery uncertain.

Figure 7: Probability of specific head trauma level based on HIC value

Peak angular velocity was determined as the maximum angular velocity related to peak linear acceleration impact time. Angular velocity values were used to derive Maximum Principal Strain (MPS) (Equation 5), Cumulative Strain Damage Measure (CSDM) (Equation 6), and Brain Rotational Injury Criterion (BrIC) (Equation 7). 

headrest impact test - probability of head trauma based on HIC

Equation 5: Maximum Principal Strain

headrest impact test - Maximum principal strain MPS

Equation 6: Cumulative Strain Damage Measure

headrest impact test - Cumulative strain damage measure CSDM

An analysis method validated by Takhounts [6] establishes physical injury criteria for various types of traumatic brain injury and uses Anthropomorphic Test Device (ATD) data to establish a kinematically based brain injury criterion (BrIC) for use with ATD impact testing. This method was utilized to express risk of diffuse brain injury according to the revised AIS scale [7] in terms of peak angular head kinematics, where:

Equation 7: Brain Rotational Injury Criterion

headrest impact test - Brain Rotational Injury Criterion BRIC

Headrest Impact Results:

A summary of key results is presented in Table a-d, below. The driver was aware of the pending impact, as he depressed the accelerator in an attempt to avoid the collision in the moments prior to the crash. In rear end collision tests involving human subjects, volunteers instinctively tensed their neck muscles as a protective response.  Given that the driver anticipated the crash his neck muscles were likewise expectedly tense as an instinctive protective response. Therefore, the results most consistent with the subject case are presented in Tables a and b. Rows highlighted in green are consistent with change in velocity experienced by the driver during the subject crash.

Table a: Summary of test results – Neck – Stiff; Headrest – lower position

headrest impact test - table a

Table b: Summary of test results – Neck – Stiff; Headrest – upper positio

headrest impact test - table b

Table c: Summary of test results – Neck – Loose; Headrest – lower position

headrest impact test - table c

Table d: Summary of test results – Neck – Loose; Headrest – upper position

headrest impact test - table d

Skull Fracture

With reference to Ono 8, none of the impact tests approached the occipital skull fracture threshold of 140 g for impacts lasting longer than 7 milliseconds. Therefore, vehicle headrests provide excellent protection against acute skull fractures at impact speeds below 25 mph.

Traumatic Head Injury

With reference to Figure 7 and Tables a-d, maximum recorded HIC values were consistent with a 5 percent or less risk of moderate traumatic head injury. Whereas, the HIC value computed at impact speeds similar to the crash was only 3.4, at which the risk of minor or moderate traumatic head injury is negligible.

Mild Concussion

With reference to Figure 8 below, the risk of an occupant sustaining a mild concussion in a rear-end collision producing a change in velocity of 6.25 mph (range 5.4 to 7.2 mph) can be determined based on the following calculation: Risk AIS-1 = 31.744*ln(x) + 6.1748 (R2=0.67). The risk of and AIS-1 mild concussion, without post-concussion syndrome, in such an impact is 64.3% (range 59.7 to 68.8%).

Figure 8: Risk of mild concussion (AIS-1) associated with headrest impact

headrest impact test - Risk of mild concussion associated with headrest impact

Severe Concussion

With reference to Figure 9, below, the risk of an occupant sustaining a severe concussion in a rear-end collision producing a change in velocity of 6.25 mph (range 5.4 to 7.2 mph) can be determined based on the following calculation: Risk AIS-2 =  0.198e0.234x (R2=0.85). The risk of severe concussion in such an impact is 0.85% (range 0.70 to 1.07%).

Figure 9: Risk of severe concussion (AIS-2) associated with headrest impact

headrest impact test - Risk of severe concussion associated with headrest impact

Traumatic Axonal Injury: 

Figure 10, below, is adapted from Margulies et al. 20 in which thresholds for axonal injury were developed and published based on mathematical modeling, animal testing and physical experiments. Results from occipital head impact against an exemplar headrest at a speed of 6.2 miles per hour are represented, indicating that rotational head and brain kinematics associated with such impact are well below scientifically-accepted thresholds for traumatic axonal injury.

Figure 10: Scientific Thresholds for Axonal Injury 

headrest impact test - Scientific Thresholds for Axonal Injury

Figure 11, below was generated from data presented in Tables a through d, to present the risk of traumatic axonal injury associated with head impact against an headrest.

Figure 11: Risk of traumatic axonal injury (AIS-4) associated with headrest impact

headrest impact test - Risk of traumatic axonal injury associated with headrest impact

Results show that the risk of an occupant sustaining traumatic axonal injury in a rear-end collision producing a change in velocity of 6.25 mph (range 5.4 to 7.2 mph) can be determined based on the following calculation: Risk AIS-4 = 0.0271e0.2391x (R2=0.85). The risk of traumatic axonal injury in an impact of the magnitude experienced by the driver is 0.12% (range 0.10 to 0.15%).

Conclusions

Biomechanical testing of head and brain injury risk associated with occipital head impact against a headrest, in accordance with published methods, shows a significant risk (59.7 to 68.8%) of AIS-1 mild concussion, without post-concussion syndrome, in a 6.2 mph rear-end collision. However, the risk of an AIS-2 severe concussion in such an impact decreases to 0.70 to 1.07%, and the risk of traumatic axonal injury is only 0.10 to 0.15%. Moreover, the mechanical traumatic axonal injury is not consistent with a sagittal plane impact.

References

[1]     Caccese V, Lloyd J, Ferguson J (2014) An Impact Test Apparatus for Protective Head Wear Testing Using a Hybrid III Head-Neck Assembly. Experimental Techniques.

[2]     Lloyd J & Conidi F. (2015). Brain Injury in Sports. Journal of Neurosurgery. October.

[3]     Lloyd J. (2017). Biomechanical Evaluation of Motorcycle Helmets: Protection Against Head and Brain Injuries.Journal of Forensic Biomechanics. 

[4]     SAE (2014) J211/1. Instrumentation for Impact Test – Part 1 – Electronic Instrumentation. Society of Automotive Engineers International, Surface Vehicle Recommended Practice, Warrendale, PA.

[5]     Padgaonkar AJ, Krieger KW and King AI. Measurement of Angular Acceleration of a Rigid Body using Linear Accelerometers. J Applied Mechanics. Sept 1975.

[6]     Takhounts EG, Craig MJ, Moorhouse K, McFadden J (2013) Development of Brain Injury Criteria (BrIC). Stapp Car Crash Journal 57: 243-266. 

[7]     Abbreviated Injury Scale (2008) Association for the Advancement of Automotive Medicine, Des Plaines, IL.

Biomechanical Analysis Athletic Protectors – Case Study

A male high-school athlete was participating in a team sport when a player from the opposing team attempted a goal. The male athlete was the only obstacle between the opposing player and a winning goal. The high speed shot, taken from less than 10 feet away, impacted the male athlete directly in the groin. He immediately fell to his knees in pain. Thankfully, he was wearing an new athletic protector (known colloquially as a “jockstrap”), which should have prevented injury even at such close quarters. Dr. John Lloyd was retained to perform a biomechanical analysis athletic protector.

lacrosse athletic protector

The athlete sat out the remainder of the game. Later that evening he became concerned as the swelling continued. The following day tests revealed that amputation of one of his testicles was medically necessary. As a young man, with his whole life ahead of him, the physical and emotional pain of losing a testicle was almost unbearable.

The young man had conducted his research before purchasing the new athletic protector. The packaging had promised comfort and protection. Why then did he sustain this life-changing injury?

Athletic protector biomechanics expert Dr. John Lloyd, was retained to evaluate a potential product liability case.

It was quickly discovered, interestingly, that there are no American Standards on the performance requirements of athletic protectors. Therefore, Dr. Lloyd devised a test method to evaluate exemplars of the subject jockstrap with comparison to models sold by other product manufacturers.

athletic protector testing

Balls were shot at various speeds from a pitching machine aimed at the athletic protectors affixed to a male mannequin. Each impact was recorded using a high-speed video camera, while Dr. Lloyd’s associate, standing behind the mannequin, measured the speed of each impact using a radar gun. A total of 70 tests were performed.

As the following high-speed video recording shows, the subject athletic protector deforms completely upon impact, providing the wearer with little, if any, protection from injury.

Several new design models also collapsed upon impact, while others cracked and broke

collapsed athletic protector
cracked athletic protector

broken athletic protector

Fortunately, the old style jock strap with which many of us are familiar was among the few models that held up to impact and actually provided adequate protection.

old athletic protector
old athletic protector testing

Based on biomechanical analysis I concluded, to a reasonable degree of scientific certainty, that the subject athletic protector provides inadequate protection of the male genitalia from injury associated with impact from a moderate speed ball. This conclusion is based on evidence of extreme deformation of the jock strap upon direct impact from a ball. 

Had the manufacturer evaluated their product under real-life conditions, as described herein, they would have learned that this product provides inadequate protection against injury to the male genitalia.  Further, comparative testing of other available athletic protectors identified products that provide better protection.

Brain Injury in Sports

Dr. Lloyd’s research article “Brain Injury in Sports”, co-authored with Dr. Frank Conidi has been published in the Journal of Neurosurgery.

Please email me at DrJohnLloyd@Tampabay.RR.com  if you would like to receive a full copy of the published article.

Abstract

BACKGROUND
Helmets are used for sports, military, and transportation to protect against impact forces and associated injuries. The common belief among end users is that the helmet protects the whole head, including the brain. However, current consensus among biomechanists and sports neurologists indicates that helmets do not provide significant protection against concussion and brain injuries. In this paper the authors present existing scientific evidence on the mechanisms underlying traumatic head and brain injuries, along with a biomechanical evaluation of 21 current and retired football helmets.

METHODS
The National Operating Committee on Standards for Athletic Equipment (NOCSAE) standard test apparatus was modified and validated for impact testing of protective headwear to include the measurement of both linear and angular kinematics. From a drop height of 2.0 m onto a flat steel anvil, each football helmet was impacted 5 times in the occipital area.

Brain Injury in Sports - apparatus

RESULTS
Skull fracture risk was determined for each of the current varsity football helmets by calculating the percentage reduction in linear acceleration relative to a 140-g skull fracture threshold. Risk of subdural hematoma was determined by calculating the percentage reduction in angular acceleration relative to the bridging vein failure threshold, computed as a function of impact duration. Ranking the helmets according to their performance under these criteria, the authors determined that the Schutt Vengeance performed the best overall.

Brain Injury in Sports - results

CONCLUSIONS
The study findings demonstrated that not all football helmets provide equal or adequate protection against either focal head injuries or traumatic brain injuries. In fact, some of the most popular helmets on the field ranked among the worst. While protection is improving, none of the current or retired varsity football helmets can provide absolute protection against brain injuries, including concussions and subdural hematomas. To maximize protection against head and brain injuries for football players of all ages, the authors propose thresholds for all sports helmets based on a peak linear acceleration no greater than 90 g and a peak angular acceleration not exceeding 1700 rad/sec2.

 

Please call Dr. Lloyd at 813-624-8986 or email  DrJohnLloyd@Tampabay.RR.com if you would like to receive a full copy of the published article “Brain Injury in Sports”

Biomechanics

Biomechanics (1899) is derived from the Ancient Greek bios “life” and mēchanikē “mechanics”, to refer to the study of the mechanical principles of living organisms, particularly their movement and structure. The earliest known reference to the study of biomechanics dates back to Aristotle (384– 322 BC), who published ‘De Motu Animalium’ (On the Motion of Animals), in which he presented the mechanical concept ‘Ground Action Force’ as a starting point to deliberate where movement comes from.Dr John Lloyd biomechanics biomechanist

The science of biomechanics has come a long way since the days of Aristotle. Contemporary biomechanics involves the application of Newtonian mechanics to determine physical capabilities and limitations of the human body. Trauma biomechanics examines whether mechanical forces acting on and within the human body may be sufficient to cause injury. The science of biomechanics is highly accepted by the courts for the purpose of explaining the mechanical causation of injuries.

Biomechanists posses advanced knowledge of human anatomy, mathematics and physics. We use this knowledge to study failure thresholds of human tissue, bone, ligaments, blood vessels, etc. When applying this knowledge to litigation, a biomechanist will perform a reconstruction to determine the forces acting on the plaintiff during the claimed injury-causing event and relate those forces to thresholds of injury. Biomechanists and Medical Doctors serve complementary roles in the medico-legal system. However a biomechanist is uniquely qualified, based on education, training and experience, to determine injury causation.

The methods that I use in my biomechanical evaluations are similar to methods that have been employed by other researchers and are generally accepted by experts in my field. Such methods have been validated and published in peer-reviewed scientific journals.

Expert in Injury Biomechanics

Dr. John Lloyd has served as a biomechanics expert for both defense and plaintiff’s counsel on hundreds of cases throughout the United States involving automobile collisions, motorcycle accidents, trucking crash as well as slips trips and falls. Dr. Lloyd is available to travel to investigate the causes of such cases. Based on his doctorate in ergonomics with a specialization in biomechanics, Dr. Lloyd can assess whether the claimed injuries meet or exceed known biomechanical thresholds of injury.

Please call Dr. Lloyd at 813-624-8986 or email DrJohnLloyd@Tampabay.RR.com to discuss how he can be of assistance with your case.

Motorcycle Helmets Provide Inadequate Protection Against Traumatic Brain Injury

Dr. John Lloyd recently conducted a biomechanical study to evaluate motorcycle helmets in terms of their ability to provide protection against traumatic head and brain injuries. Motorcycle helmet testing proves inadequate protection against concussion and diffuse traumatic brain injuries associated.

Motorcycle accident victims account for more than 340,000 fatalities annually, with the United States ranking 8th highest worldwide in the number of motorcycle accident deaths. 75% of all fatal motorcycle accidents involve brain injury, with rotational forces acting on the brain the primary cause of mortality. Current motorcycle helmets are effective at reducing head injuries associated with blunt impact. However, the mechanism of diffuse traumatic brain injury is biomechanically very different.

Samples of 9 motorcycle helmet models, representing full-face, three-quarter and shorty designs were evaluated. Helmets, fitted to an instrumented Hybrid III head and neck, were dropped at 13 mph in accordance with DOT motorcycle helmet testing standards.motorcycle helmet testing

Results show that, on average, there is a 67% risk of concussion and a 10% probability of severe or fatal brain injury associated with a relatively minor 13mph helmeted head impact.

motorcycle helmet testing results

In conclusion, motorcycle helmets provide inadequate protection against concussion and diffuse traumatic brain injuries associated with even relatively moderate impact.

Motorcycle Helmet Standards

Motorcycle helmets were originally developed in the early 20th century and, like most helmets, are modeled after military helmets, the purpose of which is to protect against penetrating head injury. The modern motorcycle helmet, with a hard outer shell and rigid expanded polystyrene (EPS) liner was actually introduced over 60 years ago. The outer shell serves as a second skull, dispersing the impact force over a wider surface area, while the inner shell compresses in an attempt to reduce translational forces. A mechanism to mitigate tangential forces is absent. Since the liner fills the entire inner surface of the shell, tangential forces cannot be absorbed and are transmitted directly to the head and brain. Motorcycle helmet standards focus on reducing the effect of linear impact forces by dropping them from a given height onto an anvil and measuring the resultant peak linear acceleration.

Motorcycle Helmet Standards

In motorcycle helmet testing, the risk of impact loading injuries, such as skull fractures, can be determined by measuring linear accelerations experienced by a surrogate head form in response to impact. Whereas risk of impulse or inertial loading injuries, such as concussion, axonal injury and subdural hematoma can be quantified by measuring impact-related angular accelerations at the center of mass of a test head form.

Unfortunately, the evolution of motorcycle helmet design is not driven by advances in scientific knowledge, but rather by the need to meet applicable testing standards. In the United States, standards include the federal motor vehicle safety standard (FMVSS) #218, commonly known as the DOT motorcycle helmet testing standards, and Snell M2015, while ECE 22.05 and BSI 6658 were adopted in European countries. Test procedures involve dropping a helmeted head form onto various steel anvils at impact velocities ranging from only 5.0 to 7.75 m/s (11-17 mph). Pass/fail is based on the ability of the helmet to provide protection against forces associated with linear acceleration in response to impact.

John Lloyd expert witness motorcycle helmet standardsCurrent motorcycle helmet testing standards do not incorporate measures of angular acceleration and therefore fail to assess whether helmets offer protection against catastrophic brain injuries. The omission of this critical measure is reflected epidemiologically in the disproportion of closed head injuries in fatal motorcycle accidents.

Human Factors

Human Factors Engineering (aka Ergonomics) is the science of work, derived from the Greek ergon (work) and nomos (laws) .  Human Factors is a systems-oriented discipline which extends across all aspects of human activity, drawing on a number of scientific disciplines, including physiology, biomechanics, psychology, anthropometry, industrial hygiene, and kinesiology (U.S. Dept. of Labor, 2000)

  • Physical ergonomics is concerned with human anatomical, anthropometric, physiological and biomechanical characteristics as they relate to physical activity.
  • Cognitive human factors is concerned with mental processes, such as perception, memory, reasoning, and motor response, as they affect interactions among humans and other elements of a system.

human factors

Dr. John Lloyd attended Loughborough University in England, where he attained a BSc. with Honors in Ergonomics (1992) and Ph.D. in Ergonomics (2002). Loughborough University is considered a premier academic institute for the study of Ergonomics / Human Factors and is currently ranked #4 University in the UK, behind Oxford and Cambridge.

Lloyd - Bachelor of Science in Ergonomics / Human Factors     Lloyd - DPS in Ergonomics / Human Factors     Dr. John Lloyd - PhD in Ergonomics / Human Factors

In addition, Dr. Lloyd has held the distinction of Board Certification since 1995 and is a member of the Human Factors and Ergonomics Society as well as the American Society of Biomechanics.

Lloyd-human factors expert     Dr. Lloyd - Board Certified in Ergonomics / Human Factors

Dr. Lloyd has been accepted by the courts in Florida and other states as an expert in Human Factors and has provided testimony on:

Distracted Driving Texting

Distracted driving is any activity that diverts attention from driving, including talking or texting on your phone, smoking, eating and drinking. I have even seen people putting on makeup and shaving their face while driving!Lloyd human factors expert distracted driving texting

Texting is the most alarming driver distraction. Sending or reading a text takes your eyes off the road for 5 seconds or more. At 40 miles per hour a car can travel the length of a football field in 5 seconds; at highway speeds, a vehicle can travel the length of almost two football fields in the same time.

Texting while driving and other cell-phone reading and writing activities are high-risk activities associated with motor vehicle collisions and mortality. In 2015 alone 3,450 people were killed on US roads. 391,000 were injured in motor vehicle crashes involving distracted drivers.

There are three types of driver distractions – manual, visual and cognitive.

  • Manual distractions cause you to take your hands off the steering wheel
  • Visual distractions cause you to take your eyes off the road
  • Cognitive distractions interfere with your mental focus on driving

Texting involves all three of the above distractions and is therefore considered a high risk activity while driving.