Human injury is complicated. If we lived our lives inside a protective bubble then, one day experienced an incident, it may be relatively simple to ascribe any injuries to the traumatic event. But that is typically not the case. As an aging nation, our bodies experience mechanical trauma every day – from work, sports, recreation and potential incidents. The question is whether forces and accelerations acting on the body as a result of a traumatic incident, such as an automobile collision, slip and fall, or recreational accident, were the direct and ultimate cause of injuries. Answering those questions is the unique role of forensic biomechanics and is typically beyond the expertise of most medical doctors.
Forensic biomechanics is the study of injury causation by measuring forces acting on and within the human body using methods of mechanics, to determine whether such forces exceed known thresholds of injury. As such, a biomechanist possesses expertise in the fields of both mechanics and human anatomy. Biomechanists and medical doctors serve complementary roles in the medico-legal system. Medical Doctors have specific knowledge to diagnose and treat a patient, however forensic biomechanics is not taught in medical school. Therefore, a biomechanist is required, based on their specialized education, training and experience, to serve as the necessary ‘bridge’ between medicine and engineering by calculating the forces acting on the body as a result of a claimed incident and thereby explaining the diagnosed injuries in terms of mechanical causation.
In a motor vehicle accident case, a biomechanist will assist the trier of fact by relating the impact forces and motions of the vehicles (automobiles, trucks, motorcycles, bicycles or pedestrians) to the resultant motion of occupants or other persons involved (kinematics). and forces they experience (kinetics) due to often multiple impacts within the vehicle interior or ground, then relate those forces to explain the mechanical causation of their medically diagnosed injuries.
Motorcycle, bicycle and pedestrian involved accidents can be substantially more complex, since the vehicles and operators tend to become separated and travel independently to their final rest positions. In Florida and many other states, motorcyclists have the right to choose whether or not to wear a helmet. Dr. Lloyd has conducted and published extensive research on the biomechanics of helmet protection, which shows that while helmets are effective at reducing the risk of penetrating head injury due to skull fracture, helmets do not offer adequate protection against traumatic brain injury, which can occur whether the rider is helmeted or not.
In a recent jury trial, Dr. Lloyd provided expert testimony in the fields of accident reconstruction, biomechanics and human factors on behalf of a plaintiff who suffered traumatic brain injury and a broken neck in a high-speed truck collision when a distracted driver drove through a stop sign. The jury awarded the plaintiff more than $14.5 million in damages.
Forensic biomechanics is also key to the analysis of cases involving slips, trips and falls, which are frequently claimed in all manners of environments, including workspaces, shopping arenas, restaurants, etcetera. Slips may occur whenever the coefficient of friction (CoF) between one’s footwear and flooring surface is too low, often due to the presence of a foreseeable foreign substance, such as a fluid. Whereas a trip may occur whenever the CoF between the footwear and flooring is too great, or unexpected, such as a transition between different surfaces. Unprotected falls can and do generate inordinate forces on the human body caused by acceleration due to gravity. For example, a simple fall from approximately 3 feet can generate an impact velocity of 10 miles per hour! But, more important is how quickly the human body comes to rest upon impact. It has been shown that a simple fall from only 12 inches onto a hard surface, such as concrete, can generate more than 1000 pounds of force on the human head, which is sufficient to cause fatal injury.
One recent slip and fall case in which Dr. Lloyd testified, involved a vascular surgeon, who went to sit down on a ‘budget’ stool to write his post-surgical notes. In that case, it was determined that the choice of casters on the wheeled stool were inappropriate for the environment, causing the stool to slip out from beneath the surgeon, who fell backwards, striking his head on the hard floor, resulting in traumatic brain injury and ongoing epileptic episodes. The surgeon, who suffered severe neurological deficits as a result of the incident was unable to return to work and also suffered many other lifelong effects. At trial the jury awarded the surgeon $10 million for injuries caused by the slip and fall.
In conclusion, a forensic biomechanical analysis may be pertinent to the success of a variety of cases, including: motor vehicle accidents (involving automobiles, trucks, motorcycles, bicycles and pedestrians), recreational accidents (including boating, jet skiing, ATVs, etc.), sports injuries / helmet protection as well as slips, trips and falls. The opinions formulated by Dr. Lloyd and other forensic biomechanists regarding the quantitative accelerations and forces necessary to result in injury are uniquely biomechanical opinions, and no other area of science or medicine is as appropriate to offer such opinions. Neither mechanical engineering nor physics include the prerequisite background concerning human body tissue properties and human anatomy. Similarly, medical training does not provide the necessary understanding of biomechanical principles to identify qualitative relationships between physical trauma and human tissue injury. Thus, a forensic biomechanist serves the legal system by quantifying the forces associated with an incident and comparing those forces against scientifically accepted thresholds of injury thereby explaining the medical diagnosis.
Judge Healey of the State of Florida First District Court of Appeals (Case No. 1D11-4210) recently upheld the importance of forensic biomechanics testimony in his ruling, which stated that “a biomechanics expert is qualified to offer an opinion as to causation if the mechanism of injury falls within the field of biomechanics” and as such is “relevant to establishing a reasonable hypothesis … that the victim’s injuries were consistent with … trauma”.
Ultimately, the success of any expert lies in their ability to convey often complex matters to a jury. Based on over 20 years of experience as an expert, during which time Dr. Lloyd has provided testimony at trial or in deposition more than 80 occasions, he has become highly proficient in using methods that express complex matters in simplistic terms for the purpose of educating the jury as to the facts of a case.